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ABS”J’RACT

A Modular Autonomous Robotic Systcm (MARS), consisting of a modular autonomous
vchic]c control systcm that can bc retrofit on to any vchic]c to convert it to autonomous
control, and support a modular payload for mu]tiplc applications is being clcvclopccl.  The
MARS clcsign is scalable, rcconfigurab]c,  and cost cffectivc due to the usc of modern open
systcm  architecture design mcthodo]ogics, includin~  serial control bus technology to simplify
systcm  wiring and enhance scalability. ‘1’hc design is augmented with modular, object oriented
(C+ + ) software implementing a hierarchy of five levels of control including tclcopcratcd,
continuous guidcpath following, periodic guidcpath  following, absolute position autonomous
navigation and relative position autonomous navigation. ‘1’hc autonomous vchic]c  control
systcm design uses a stochastic map, and cascaded Kalman filter to fuse numerous position
sensor groups, including an inertial sensor suite, a differential GPS sensor, several landmark
detection sensors, and a cost cffectivc,  random access 3600 scanning laser rangcf]ndcr,  or
I Al IAR. The I,AI)AR  also doubles as a high precision obstacle detection sensor. operational
capability of a rapid prototype ATV has been demonstrated including the 1.AI)AR,  machine
vision, and inertial sensor suite based dead-reckoning. 3%c present effort is focused on
producing a systcm that is commcrcia]ly  viable for routine autonomous patrolling of known,
semi-structured environments, like environmental monitoring c)f chemical and petroleum
rcfincrics,  exterior physical security and survcillancc, pcrimctcr  patrolling, and intra-facility
transport applications.

lNTl<OI)lJCHON

Numerous autonomous robotic vchiclcs and control systems have been developed in recent
years, by universities, government labs, and commercial companies. Some of these designs
have found commercial applications, although broad based conmcrcial  application and market
acceptance has been illusive for all but the simplest approaches like Automated Guided
Vchiclcs (A(iVs).  Based on market analysis, applications for autonomous robotic vehicles am
apparently plentiful, if a satisfactory systcm  and life-cycle cost effectiveness can bc met. We
hypothesize that with a properly modularized, scalcablc,  and rcconfigurablc  autonomous



.
vehicle control systcm architecture, that a mmmcrcially  viable systcm can bc obtained,
providing sufficient cost cffcctivcncss  and return on invcstmmt  to justify  substantially
incrcascd  market acceptance for a variety of applications. This paper will introduce our
technical approach for producing such a systcm, followccl  by an overview of some of the
candidate applications targeted.

“l-hc fundamental basis of our approach for the development of the “Modular Autonomous
Robotic Systcm”  or MARS.is based on recognizing that it is possible, and high]y  desirable, tc}
separate the vehicle being controlled from the autonomous control systcm  itself. “1’his  allows
the usc of any vchiclc, whether general purpose or specially bui]t, and by subscqucnt]y  adding
on a set of sensors, actuators, and “black box” electronics and control computers, an intelligent
autonomous robotic vchiclc can be produced for virtually any apj]lication.  “]’his  approach
forces a gcncralizcd architecture, and limits the use. of simplifications for some applications.
1 lowcvcr, it is anticipated that the economics of scale and extra flexibility provided by having a
general approach will ultimately bc more advantageous. Modularizing an autonomous robotic
vchiclc  control systcm requires consideration of various aspects, including:

● computing hardware, both centralized and distributed
● actuation hardware
● sensing harciwarc
. communication hardware and software
● control algorithms and software
● software infrastructure

‘1’hc scope of these technologies is cxtcnsivc, and creating an architecture that hand]cs all
aspects can seem overwhelming. } lowcvcr recognizing that the architecture will ultimately bc
embodied as one or more physical instantiations, wc approached the problem by starting with a
formal product specification sheet for both a low cnd indoor AGV-like autonomous robotic
vchic]c,  and a high cnd outdoor security and surveillance autonomous robotic vchiclc. ‘1’hcsc
two clcsigns were then gcncralimi,  and the conHnoJ)  functions and interfaces defined, to prcwidc
a scalcablc architecture that could meet both design targets cost effectively. Wc will dcscribc
some of the preliminary approaches taken and results of this effort, by describing the hardware
architecture first, followed by the software architcctur-c.

MARS IIardware Architecture

}:igurc 1 shows an overview of our hardware architecture for the MARS development. Onc of
the main features of t}lis hardware architecture is the usc of a serial control bus for acquiring
sensor information and controlling actuators. “l’his “sensor / actuator bus” will now be
introduced.
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Serial Control Bus ‘1’ethnology

‘1’hc mnccpt  of a scalcablc  controller bus has been clcvclopcd to increase the lCVC1 of integration
involved in embedded controller applications. Specifically, by converting from a parallel
hardwircci  electrical interconnection approach to a distributed serial bus interconnection
approach, significant savings in wiring and other raw materials, and installation costs can bc
~aincd.

The serial bus interface approach to embedded controls has been spear-headed by major
autonmtivc  manufacturers to reduce in-vchic]c  wiring cost and size for ncw autonlobilcs,  for the
control of electric windows, lights, acccssorics, and similar items. ‘1’hc primary automotive bus
standard has been Contro]lcr  Area Network, or CAN, which has been promoted by Bosch and
othm major manufacturers.

CAN intcrfacc chips arc now available from lntcl,  Motorola, Phillips, Signctics  and others, and
the application of this approach is accelerating. These harclwarc components provide the
physical and data layer functionality, but lack a standardized application ICVCI protocol for
intcropcrab]c  communications. Some work at standardization of the 0S1 1S0 level 7
application protocol for the CAN bus has been conducted, and Chnnitcch  Robotics is currently
active in this area. Chnnitcch  Robotics has recently complctcd the dcvclopmcnt of it’s first
(IAN bus intcrfacc product, called CANAN41’. CANAMP provides the following features:

● Nctworkablc  motion control
● 600 watt brush motor servo amplifier
● 32 bit ] )SP motion controller
● Microcontroller with HASIC intcrprctw
● 1 Mbaud  CAN interface (l SO/I)l S 11 898)
● I)igital  amplifier parameter setting
● 8 analog inputs, 10 bit resolution
● 6 digital inputs, 2 digital outputs
● optional analog tachometer stabilization
A photograph of a CANAMP is shown in Figure 2.

nigh integration Actuators

1 ligh integration actuators refers to a design  apprctach  where the servo actuator is packaged
with the necessary control components into a complete stand-alone unit. Specifically these
units typically incorporate a motor, transmission dcvicc,  feedback clcmcnt(s), power amplifier,
and logic control lcr with interface in a single hardware package.

The advantage of using high integration actuators include the ability to completely specify the
resulting actuator’s performance parameters, reduction in the total system weight, size and
volume duc to the elimination or l~~il~il~~alizatiol~  of ancillary connectors, cables, etc., and the
unit is convenient to USC, mount, test, and replace.
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l’igurc  2: l’hotograph of CANAhll’

‘J’hc concept of high integration actuators is not new, in fact it has been applied to acrospacc
type applications for many years, due to tbcsc  applications’ premium cm size, wcigbt, volume,
and performance. It is new to main-stream automation applications however. Figure  3
illustrates an overview of higli integration actuators dcvclopcd  by On~nitcc}l  using the
CANAM1’.

Figure 3:1’11 otograpl~  of th e IIigh lrltegratiott  Actuator Ik?sclopcd  b~~ Onmitech
Robotics, ]nc.
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MARS SOlrlWAltlL  A1{CI1l’J’ItC’J’LJlll~,

Arcl)ifccturc  for Configuration Management

‘1’hc vision of this work is a dmclopmcnt  architecture that establishes and supports a managed
information repository of modular hardware and software elements that can bc insta]lcd  into
Unmanned Ground  Vehicle (UGV) systems.

};igmc 4 shows an overview of the combination] of tools and methods to accomplish a
cmfiguration  management architcctm-c.  Configuration Management will maintain documcntc(l
software source COCIC and documcntc(i  hardware configuration modules available al the design,
analysis, and implementation levels of systcm dcvclopmcnt.  ~’his would  rcducc  the amount  of
rc-cnginccring and cnhancc  the intcropcrability  of tclcopcratccl  / scl~li-atltor~ol~lotls  systems.
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Gnfiguraticm  n~anagcmcnt  will encompass the tasks of handling changes to software/ hardware
conlponcJ~ts that comprise the interface protocols that maintain intra and intcmpcrability  of
UGVs developed under a joint architecture. I’his includes mct}lods for evaluating changes,
tracking changes, and keeping copies of the architecture that existed at various points in time.
~’he complexity of t}lis task requires a systematic apjwoach  that is embodied in our outline of a
configLlration  management architecture.

lnitia]ly, our configuration MaJlagcmcnt  architcctLlrc  will specify and maintain a basis set of
protocol standards, software and hardware, available for the usc of achieving downwardly
compatible intra and intcropcrablc U6V systems.

‘1’hc support for the managed information repository will consist of automated project
management too]s, rcvisioJl coJltro] too]s, and rca]-tiJnc structured aJla]ysis  tools sLlch as the
object  Modeling Tcchniquc  (OM’I”) combined to n~aJ~agc  a joint UGV configuration
architcctLmc.

hlanagcci  hardware c]cnlcJ]ts will coJ}sist of contro]lcr Jlctworking  such as the Controller Area
Network (C; AN) Jlodcs and high iJ~tcgration actLlators to be used oJ) the vehicles, radio
cqLlipn~cJ]t,  and operator coJ~trol  unit (C)C(J)  equipment and standards.

Software components wi]] consist of Jnodularized  uJlits  for cc)lllJrlllllicatioJl  protocols, softwarc-
hardwarc interface, data clcnlcJ~ts  and strLlcturcs,  and message formats.

IMcumcntation of the hardware / software clcnlcJ~ts will address the iJ~tcndcd USC, applied uses,
aJld rcprodLlciblc  test cases aJld results. This type of dOCLIJllC1ltatiOJl  would make the evaluation
ofhardwarc  / software reuse feasible.

MILTllO1)S  AN1) ‘l K)()] ,S OVIHtVIEW

Opcraling  Systems and Programming Software

The platform for system devclopJncnt  would be a real-time operating systeJn, using
staJ~dardizcd 0S services (like the IEI;F, dcfiJ~cd  POSIX 1003.1 and 1003.4  standards) such as
the I,ynxOS to support thrcadiJ~g  of processes for rate monotonic process organization, and the
Ada or (~+ t programming laJ~gtJagc.

Structured Analysis

StrLlctured aJ~a]ysis  tools  decompose a design task into sJnallcr, more JllaJlagCab]e  subsystems.
‘1’hc Objcct  Modeling Technique (C)MT) developed by RuJnbaugh allows for a system
dccoJnposition based upon the objects in the systcJr)  regardless of whether they arc hardware
components or software con~poJ~cJ~ts.

Systcnl coJnponents froJn a ~oJ~figL~ratioJ~  MaJlagcnlcnt  repository could be evaluated and
reused at this early point in the design process. Their applicability to a current systcJn  design

,
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would  bc verified by the documentation giving a module’s intended USC, rcproducib]c  test cases,
and systms  currently using the module.

Project Management Tools

Automatccl  time scheduling tools follow the object modeling process by incorporating the
hardware / software objects iJ~to a scheduling process.

Revision Control Software

“1’o maintain configuration control over systems interfacing, system modules used from a
repository arc compared to t}lc originals for changes. If the than.gcs warrant permanent
inclusion into the standardized protocols whi]c maintaining downward compatibility with other
systems, then they arc added to the standards and given a revision number. This aspect should
not bc undcrcstimatcd,  in fact Microsoft corporation has stated “Version control is
indispcnsab]c on team projects. It’s so effective that the applications division of Microsoft has
found source code version control a major competitive advantage.” (Moore, 1992) [as cited
from (~odc Complete - A practical handbook of software constrLlction]

Objcct I]ased l)esign l’hilosophy

‘1’his section provides an overview of the documentation provided by the CA1)R}{ Paradigm
Plus software’s automated C)M1’ tool that onmitcch  is currently using to define our MARS
and Standardized l’clcopcration System software architecture.

Although the l’aradigm Plus (1’1’) tool’s most obvious application is to facilitate software
cnginccring, it is flexible and generic enough to allow defined objects to represent hardware,
software, or a combination of both. IFor instance, an incrlia] mcasurcmcnt unit consists of the
physical hardware as well as the data structLlres and routines to read the data as shown in
l;igLms 5 and 6. .

An object might contain code and data structures that perform hig}~ level system tasks such as
task planning. ~’his module might bc software only, and only interface with other software
objects. objects may also contain code that is designed to bc downloaded onto an }tIH’ROM
and rL]n as lower level control or monitoring software. Then the object would include bot}~
hardware and software interfaces.

At even lower lCVCIS, other objects may represent hardware functionality such as video
equipment. l’hc designcx would be able to have the hardware object contain only
documentation describing the hardware and how it interfaces with the system, or the object
could contain code that simulates hardware behavior.

liach of these modules encapsulates data and methods (functions) used upon the data allowing
more reliable code reuse.
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Reusability of code

Steve Mc(kmne] notes  that “NASA’s Software hhginceing  1,abmatory  studied ten psojccts  that
pursued reuse aggressively (McCiarry,  Wa]igora,  and Mc])crmott,  1989). 1]) both the objcct-
bascd  and the functionally oricntccl approaches, the initial pr(~ccts weren’t ab]c to take much of
their code from previous projects because previous projects hadn’t established a sufficient data
base. Subsequently, the projects that used functional design were able to take about 35 pcrccnt
of their cock from previous projects. l’rojccts  that used an object-basccl approach [the approach
we recommend] were able to take more than 70 percent of their code from previous pmjccts...  ”
[as cited from Code Complete] - A practical handbook of software constrLlction]

l)ynarnic Modeling Documentation

(Mc of several examples of the documentation provided by OMT, the state diagram in l’igure 7
shows how events arc traced through a systcm  and proviclcs  supporting documentation for the
intended usc of a piccc of software or hardware.
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Functional Systcrn Analysis

~’hc functional mock] consists of data flow diagrams and constraints as shown in };igure 8. It
identifies input and output values and defines what mch  function dots. Many strLlctural
analysis mcthocls  include this type of analysis, making a variety of methodologies
inlcrchangcablc with the usc of OMrl’. While a repository of sof{warc  / hardware objects, such
as communication protocols, would bc documcntccl  and organized under OMT, this would not
prcc]ude other ana]ytica]  methods from taking advantage of the modules documented lvith
0M7’.
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Software Architecture in the OMrl’

Subsequent to the object IJ~odcling,  dynamic modeling, and fLmctional modeling, the overall
organization of the system into subsystems comprise the system’s architecture. Oftcn the
overall architecture can be based upon previous architectures. Architectures typically organize
objects into a sequcncc  of horizontal layers or and / or vertical partitions where prudent
organization limits the interactions between objects, increasing modularity. An example of
horizontal layering is the OS1-RM 7-layer computer communications protocol which crcatcs
definitive interfaces. An example of vertical partitioning is virtual memory management and
process control in an operating system. Modularity is the
‘behind the plct}~ora  of high level architectures in the literature,
as classical programming practices.
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The true test of modularity will be the rcusabi]ity  of components in future systems w}~ilc
maintaining some degree (preferably a high degree) of downward compatibility with present
systcn)s.  ~’hc true test of a development architcctLlrc for configuration management will bc its
ability to control change  in a fashion that does not stifle innovation.

Just as the evaluation of different objects wit}~in  a system for reuse in future systems will be
accomplished at the beginning of a design  pmjcct by examining documentation, differcJlt  high
ICVC1 architectures should be evaluated by rcvimving  intended usc statements, reproducible test
cases, and a history of implementations.

Documentation Provided by Automated l’reject Management Tools

in many instances, the embedded software and hardware in a system will rcqLlirc that a test bed
setup be provided to software developers prior to the complete system. ‘1’cst beds am
sometimes necessary for a hardware system’s proof of concept.

I’o maintain a direct correspondence between the variety of time dependent constraints imposed
upon U(;V  systems, objects within a design can be entered directly into project management
software . Maintaining project scheduling histories for components within a Configuration
hlanagcmcnt’s repository would not only focus attention upon t}lc time constraints and the cost
cffcctivcncss  of modules selected for a project but also on modules under development having
similar characteristics. Automated project management software provides many views of t}~c
scheduling process such as the I’}R”l chart, overlaid calendars, and filtering of schedules to
identify the usc ofrcsourccs  or to make calendars for different resource sharing.

l)ocumcntation  and CASE tools

Our emphasis on the usc of ~ASIl  tools is stressed equally for reasons of software system
configuratioJ~,  and documentation to allow reuse of code. It is specifically not due to
productivity gains in the original development of the code. This is less than ideal admittedly,
but a reality for software development using existing (ASH tools, as is evidenced in t}~c
following quote: “At the Achieving Software Quality Ilcbatcs,  I)on Rcifcr reported the results
of a survey on the effectiveness of CASE tools. 1 le collected data from 45 companies in 10
industries representing over 100 million lines of code. Rcifcr founcl an average productivity gain
with C;ASI; of 9 to 12 percent, but said that not a single fir-m could justify the cost of ~AS}l
using the gains alone  as a reason (Myers, 1992). A second report has also concluded that ~ASE
tools have yet to meet t}lc claims made for them in the popular press (Vcssey, Jarvcnpaa, and
l’ractinsky,  1992).” [as cited form code (omplctc  - A practical handbook of software
construction]

l’reject I.ife Cycle and Cost Reduction

‘l”he life cycle of a project consists of several phases, each phase overlapping other phases to
Solnc extent. Good documentation during the design phase will contribute to the
in~plcmcntation  phase and later to the maintenance phase. The cost of t}~is  documentation to
support configuration management should not exceed its value however .
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